

Beyond Standard Model in the top sector at CDF

Veronica Sorin

Michigan State University

For the CDF collaboration

TOP2008, Isola d'Elba

BSM in the top sector

- o TOP: Large mass, of the order of the electroweak symmetry-breaking (EWSB) scale
 - o Tevatron combination: $172.6 \pm 1.4 \text{ GeV/c}^2$
- o special role in the mechanism of the EWSB?
 - ⇒ Window on new physics

Resonant production

> search for new resonances or gauge bosons

Exotic Decay modes:

- > FCNC
- > Charged Higgs

New particles with top-like signature (admixture in top sample)

- > Heavy top-like quark
- > Scalar top

Exotic Decay modes

- > FCNC
- > Charged Higgs

Search for Flavor Changing Neutral Currents

- In the SM, FCNC heavily suppressed.
 - BR($t \to Zq$) = $O(10^{-14})$
- New physics model predict higher branching fractions up to $O(10^{-4})$.
- Any signal of this rare decay
 - ⇒ new physics

Phys. Lett. B549 (2002) 290-300

- Best published limit corresponds to $BR(t \rightarrow Zq) < 13.7\%$, from LEP

Model	$\mathbf{BR}(t \to Zq)$	
Standard Model	$\mathcal{O}(10^{-14})$	
q = 2/3 Quark Singlet	$\mathcal{O}(10^{-4})$	
Two Higgs Doublets	$\mathcal{O}(10^{-7})$	
MSSM	$\mathscr{O}(10^{-6})$ $\mathscr{O}(10^{-5})$	
R-Parity violating SUSY		
[after J.A. Aguilar-Saavedra, Acta Phys. Polor B35 (2004)		

FCNC Search: Methodology

- Search in the ttbar \rightarrow ZqWb \Rightarrow select Z+ >= 4 jets events
- Backgrounds: dominant Z+jets

• Discriminant:
$$\chi^2 = \left(\frac{m_{W,\mathrm{rec}} - m_{W,\mathrm{PDG}}}{\sigma_W}\right)^2 + \left(\frac{m_{t \to Wb,\mathrm{rec}} - m_t}{\sigma_{t \to Wb}}\right)^2 + \left(\frac{m_{t \to Zq,\mathrm{rec}} - m_t}{\sigma_{t \to Zq}}\right)^2$$

FCNC Search: Methodology

FCNC Search: Methodology

Previous version: counting experiment

- Using two signal regions:
 - tagged and un-tagged
 - optimized selection cuts
- ⇒ Dependence on absolute predictions of backgrounds

Kinematic Variable	Optimized Cut
Transverse Mass	$\geq 200\mathrm{GeV}$
Leading Jet	$\geq 40\mathrm{GeV}$
Second Jet	$\geq 30\mathrm{GeV}$
Third Jet	$\geq 20\mathrm{GeV}$
Fourth Jet	$\geq 15\text{GeV}$

New version performs a template fit:

- background normalization a free fit parameter
- but sensitive to shape uncertainties

Add control region with large background acceptance

(events failing >= 1 of the optimized cuts)

- Constraint on the background shape uncertainties (dominated by JES)
- · Constraint Z+jets background

FCNC Search: Shape Systematic Uncertainties

Shape uncertainty: Choice of JES

Data/MC comparison for nominal and -1 σ JES (5% shift on mean value $\sqrt{\chi^2}$ for Z+jets)

To handle the JES shape uncertainties: "horizontal morphing"

Fit treats shift as a continuous parameter by interpolating between templates at discrete shift values

FCNC Search: Results

Simultaneous fit to the mass χ^2 distribution of two signal regions and 1 control one:

- $B(t \rightarrow Zq) = -1.49\%$
- Assuming B=0, p-value of 26.6%

FCNC Feldman-Cousins Band (95% C.L.)

The upper limit is obtained from the Feldman-Cousins band:

expected 5.0%

B(t→Zq) < 3.7% (95% C.L.)

BSM at CDF

Measured $B(t\rightarrow Zq)$ TOP 2008, Isola d'Elba

Search for charged Higgs in top decays

- In the Minimal Supersymmetric Standard Model (MSSM):
 - BR(t->H+b) >10% for small and large $tan\beta$
- At small tan β , the H+ will predominantly decay to H+ -> $c\overline{s}$
 - Masses larger than W boson have not yet been excluded by previous searches. PRL 96, 042003 (2006)

Charged Higgs search: Methodology

similar signature SM LJ channel

difference will show up on the dijet invariant mass

Reconstruct the event using a kinematic fitter

mass of the top and W constrained to 175 and 80.4GeV

 $\frac{\left(m_{jj}^{reco}\right)^{2}}{\Gamma_{...}^{2}} + \frac{\left(m_{lv} - m_{W}\right)^{2}}{\Gamma_{...}^{2}} + \frac{\left(m_{bjj} - m_{t}\right)^{2}}{\Gamma_{.}^{2}} + \frac{\left(m_{blv} - m_{t}\right)^{2}}{\Gamma_{t}^{2}}$

M(H=120GeV), di-jet

Charged Higgs search

- LJ channel, ≥ 4 jets, ≥ 2 b-tagged jets (200 events)
- Fit the reconstructed dijet-mass for the branching ratio

Charged Higgs search: Expected Limits

Systematic uncertainties included as shifts on branching ratio

draw PE from modified templates and fitted to nominal

dominant systematic: JES

Expected limits no signal

Statistically limited

Charged Higgs search: Results 2.2 fb-1

Observed limits

Consistent with SM

Resonant production

Top quark Production

Top production cross section and distributions sensitive to new physics Probe of new resonances or gauge bosons strongly coupled to top quark (topcolor, technicolor, Kaluza-Klein states....)

Top quark Production Search for a Massive gluon

Search for new particles decaying to a top quark pair:

- " Massive Gluon (G)"
- This process interfere with the SM $q\overline{q} \rightarrow t\overline{t}$
- \Rightarrow the $t\overline{t}$ invariant mass spectrum will be distorted by interference effects

Not just a bump search

example of M_{tt} distribution for a color-octet massive gauge boson of Γ =0.2 M_G , coupling =1 (mtop 160GeV) Phys. Rev. D 49, 4454 (1994) Christopher T.Hill, Stephen J. Parke

Search for a Massive gluon

- Define λ as the strength of coupling relative to the strong coupling
- · Assume

- Coupling: $\lambda = \lambda_q \lambda_Q$
- no P-violation
- SM top decay

Production Matrix element \Rightarrow quadratic function of λ

$$\frac{\left|M_{prod}(MG)\right|^{2}}{\left|M_{prod}(SM)\right|^{2}} \equiv 1 + 2\lambda\Pi_{int} + \lambda^{2}\Pi_{G}$$

Dependent on Mass and Γ of G

Assume no particular model \Rightarrow Generic search on the (M_G, Γ) space

Massive gluon search: Methodology

In the L+J channel with 4 jets and 1 or more b-tags

- M_{tt} reconstruction: use the Dynamical Likelihood Method (DLM)
 - ✓ Profit from the experience on the top mass measurement
 - ✓ Adjusted method for this search by:
 - Reconstruct the event-by-event tt invariant mass with a blinded production matrix element (set to 1).
 - Define the invariant mass of the event as the mean of the event likelihood distribution
- Use an unbinned likelihood : fit for λ as a function of M_G , Γ
 - ✓ Define the probability density function for signal and background (signal: $q\overline{q} \rightarrow t\overline{t}$ (SM or Massive Gluon), Background includes $gg \rightarrow t\overline{t}$)
- Compare with the SM expectation. If consistent with SM, find upper/lower limits.

Massive gluon search: Methodology

- Use an unbinned likelihood: fit for λ as a tunction of M_G , I
 - Define the probability density function for signal and background (signal: $q\overline{q} \rightarrow t\overline{t}$ (SM or Massive Gluon), Background includes $gg \rightarrow t\overline{t}$)
- Compare with the SM expectation. If consistent with SM, find upper/lower limits.

Massive gluon search

Massive gluon search: Results

1.9 fb⁻¹

New particles with top-like signature (admixture in top sample)

- >Heavy top-like quark
- >Scalar top

Search for heavy Top-like quarks

Production of new quarks decaying with similar signatures top quark pair

Introduced by theories:

- predicting 4-th generation of massive fermions PRD 64, 053004 (2001)
- Heavy top-like: Little Higgs PRD 69, 075002 (2004)
- Fermion doublets: Beautiful Mirrors PRD 65, 053002 (2002)

Assumed that new quark:

- t'is pair produced strongly
- t' heavier than top
- t' -> Wq

- > model independent: estimate significance of potential excess in data
- > if no excess, establish limit on the cross section for t' quark pair production

t' search: Methodology

- L+J channel, no tagging requirement (searching for t'->Wq)
 - Main backgrounds ttbar, W+jets and QCD
- \triangleright 2D fit to the H_T vs M_{rec} data distribution

$$H_T = \sum_{jets} E_{T,jets} + E_{T,lepton} + E_T$$

- M_{rec} is the reconstructed mass of the top quark
 - Use kinematic fitter (χ^2 function)
- Reduce the dependence on the QCD modeling:
 - applied a QCD removal cut:
 - E_T leading jet > 60 GeV
 - QCD is reduced by ~60%, signal reduced by ~10% at 240GeV

t' search: Methodology

$$\mathcal{L}(\sigma_{t'}|n_i) = \prod_{i,k} P(n_i|\mu_i) \times G(\nu_k|\tilde{\nu}_k,\sigma_{\nu_k})$$
 Nuisance Parameters

Parameters of the fit

- t': Varies freely
- Top: Constrained to SM cross-section
- W+Jets: Varies freely
- QCD: derived from data
 Fit insensitive to this contribution

Systematics

- Included as shifts on $\sigma_{t'}$ (draw PE from modified templates and fitted to nominal)
 - · dominant systematics: Q2 scale for W+jets
- JES handled by template morphing
- Nuisance parameters are handled by profiling (maximize L).

t' search : Results

t' search: Expected and Observed Limits

Exclude with 95% CL t' mass below 284 GeV/c²

t' search: Significant excess on the tails?

Group data in nxn bins of 25x25:

- Start from 1x1, 2x2, etc
- find SM expected number of events
- get significance (p-value) for the observed number

Find choice of larger significance:

→ 8×8

- 11 observed events
- 4.7 expected,
- p-value 0.0089

p-value for having observed 1 nxn bin with that or larger significance:

- "global" P-value = 2.8% ,
- Corresponding to ~ 1.9 σ

t' search: Significant excess on the tails?

Group data in nxn bins of 25x25:

- Start from 1x1, 2x2, etc
- find SM expected number of events
- get significance (p-value) for the observed number

Find choice of larger significance: $\rightarrow 8\times8$

- 11 observed events
- 4.7 expected,
- · p-value 0.0089

p-value for having observed 1 nxn bin with that or larger significance:

• Corresponding to ~ 1.9 σ

No significant excess observed

Search for pair production of Stop quarks

Within SUSY, a
very likely scenario: the lighter top
Superpatner is lightest than top
⇒ within Tevatron reach

Assuming:

WMAP data

Decay

$$\tilde{t_1} \to b\tilde{\chi_1}^{\pm} \to b\tilde{\chi_1}^0 W^{\pm}$$

≈ signature of top quarks

 $\tilde{\chi}_1^0$ is the LSP

Cross sections expected to be a magnitude lower than ttbar

⇒ perform a kinematic analysis, explore the 3D phase space of these masses and place limits on the cross section of pair production stop

Search for pair production of Stop quarks

How stop events would behave under top event reconstruction?

Dilepton channel:

good signal:bckg

 $Reconstructed\ DIL\ Top\ Mass$

Bias mass to lower values

LJ channel:

large contributions from W+jets

indistinguishable from background

Perform the analysis on the Dilepton channel Initial selection of >= 2 jets and MET>20GeV.

Stop search: Mass reconstruction

Use a kinematic fitter.

Solve for an under-constrained system

> Treating neutralino and the neutrino as a pseudo-particle:

Pair invisible particles into PP, Fix mass=75 Gev and width= 5 GeV

- Constrain chargino mass
- Minimize χ^2 for possible directions of PP for each leg (12x12 grid)
- Obtain mass as the weighted average

Stop search: Mass reconstruction

Stop search: backgrounds

Main background are top events

Kills ~50% of top with ~15% loss of signal.

Stop search: systematics and optimization

Template morphing:

- Treat shape systematics (largest JES)
 - nuisance parameter in the Likelihood
- Also to obtain mass templates between generated MC points

$$\begin{array}{ll} 135\,GeV & < m_{_{\tilde{t}}} < 155\,GeV \\ 105.8\,GeV < m_{_{\tilde{\chi}_{1}^{\pm}}} < 125.8\,GeV \\ 43.9\,GeV & < m_{_{\tilde{\chi}_{1}^{0}}} < 58.8\,GeV \end{array}$$

Event selection:

- -divide in tagged and untagged
- -optimized for each channel (jet Et, MET, top killer)

Stop search: Results

No evidence for stop found

Coming soon:

Change branching ratio assumption
Obtain 2D exclusion

Summary

No evidence of new physics, so far

- Larger samples available: 3.5fb-1 on tape
- New and Updated searches coming soon

http://www-cdf.fnal.gov/physics/new/top/top.html

Tevatron

- Stringent tests of SM (qq->tt mode)
- Sophisticated analysis techniques
- Techniques to control systematics

Backup

Massive gluon search: Signal and Background p.d.f.

Likelihood function

$$L(\alpha, \mathbf{v}_{s}, \mathbf{v}_{b}) = G(\mathbf{v}_{b}; \mathbf{v}_{b}^{\text{exp}}, \sigma_{b}^{\text{exp}}) P(N; \mathbf{v}) \prod_{i=1}^{N} \frac{\mathbf{v}_{s} P_{s}(\sqrt{S_{tt}}(i); \alpha) + \mathbf{v}_{b} P_{b}(\sqrt{S_{tt}}(i))}{\mathbf{v}}$$

 $\alpha = (\lambda, M, \Gamma)$

Running PE we can obtained the SM expectations from:

And the upper/lower limits

TOP2008, Isola u ⊏ıva

FCNC

Template fit parameters:

- Branching fraction $B(t \rightarrow Zq)$
- Number of Z+jets events in the control region
- Shift in the ratio of Z+jets events in the signal regions vs. the control region (Gaussian constraint, 20%)
- Fraction of signal events in the "tagged" signal region
- · Shift in jet energy scale

Fit Parameter $(\int L dt = 1.9 \text{fb}^{-1})$	•	Value	
Branching Fraction, $\mathscr{B}(t \to Zq)$ (%)	-1.49	\pm	1.52
Z+Jets Events in Control Region, Z_{control} Shift in Ratio Signal/Control Region, $\sigma_{\mathcal{R}_{\text{sig}}}$ Tagging Fraction, f_{tag} (%) Jet Energy Scale Shift, σ_{JES}	129.0 -0.61 20.0 -0.74	± ± ±	11.1 0.60 5.9 0.43

Stop: optimized event selection

Anti-Tagged Channel 20 GeV < E_T , 20 GeV < P_T^{jet0} , 20 GeV < P_T^{jet1} 20 GeV < $M_{\ell\ell}$, H_T < 215 GeV + 325 GeV × $\frac{\Delta\phi_{leps}\Delta\phi_{jets}}{\pi^2}$, $\Delta\Phi(E_T, jet \ OR \ lep) > 20^0 \ OR \ E_T > 50 \ GeV$

Events per 2000 pb^{-1} with Njet ≥ 2

			. –	
Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$
Top	4.38 ± 0.64	4.45 ± 0.66	9.85 ± 1.36	18.68 ± 2.46
Z+HF	0.26 ± 0.05	0.20 ± 0.04	0.07 ± 0.01	0.54 ± 0.10
Z+LF	9.33 ± 2.57	6.77 ± 2.10	3.13 ± 0.25	19.23 ± 4.91
Diboson	1.40 ± 0.25	1.05 ± 0.21	2.46 ± 0.45	4.91 ± 0.91
Fakes	1.65 ± 0.49	1.98 ± 0.59	5.02 ± 1.51	8.66 ± 2.60
SM Total	17.02 ± 3.01	14.46 ± 2.59	20.54 ± 3.28	52.02 ± 8.04
Data	20	6	20	46

Tagged Channel 20 GeV < E_T , 15 GeV < P_T^{jet0} , 12 GeV < P_T^{jet1} , 20 GeV < $M_{\ell\ell}$,

 $H_T \equiv \sum P_T < 215 \text{ GeV} + 325 \text{ GeV} \times \frac{\Delta \phi_{leps} \Delta \phi_{jets}}{\pi^2}$

Events per 1900 pb^{-1} with Njet ≥ 2

		_	•	
Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$
Top	8.43 ± 1.29	7.81 ± 1.20	20.26 ± 2.85	36.50 ± 5.27
Z+HF	1.02 ± 0.22	0.70 ± 0.15	0.27 ± 0.05	2.00 ± 0.43
Z+LF	0.63 ± 0.07	0.37 ± 0.07	0.24 ± 0.02	1.24 ± 0.12
Diboson	0.14 ± 0.02	0.10 ± 0.01	0.20 ± 0.03	0.44 ± 0.06
Fakes	0.39 ± 0.12	0.48 ± 0.14	1.48 ± 0.44	2.35 ± 0.70
SM Total	10.62 ± 1.49	9.46 ± 1.27	22.46 ± 2.88	42.53 ± 5.56
Data	10	11	24	45

Kinematic fitter (stop)

$$\begin{split} \chi^2 &= \frac{\left(\vec{l}_{meas} - \vec{l}_{fit}\right)^2}{\sigma_l^2} + \frac{\left(\vec{l}_{meas} - \vec{l}_{fit}\right)^2}{\sigma_l^2} + \frac{\left(\vec{u}_{meas} - \vec{u}_{fit}\right)^2}{\sigma_{uncl}^2} \\ &+ \sum_{jets\,i} \frac{\left(\vec{j}_{i_{meas}} - \vec{j}_{i_{fit}}\right)}{\sigma_{jet_i}^2} + \frac{\left(M_{PP_1}^{fit} - M_{PP}^{assume}\right)^2}{\Gamma_{PP}^{hepg}} \\ &+ \frac{\left(M_{PP_2}^{fit} - M_{PP}^{assume}\right)^2}{\Gamma_{PP}^{hepg}} + \frac{\left(M_{PP_1,l} - M_{\tilde{\chi}^\pm}\right)^2}{\Gamma^{\tilde{\chi}^\pm}} \\ &+ \frac{\left(M_{PP_1,\bar{l}} - M_{\tilde{\chi}^\pm}\right)^2}{\Gamma^{\tilde{\chi}^\pm}} + \frac{\left(M_{PP_1,\bar{l},b_{jet}} - M_{PP_2,l,\bar{b}_{jet}}\right)}{\Gamma^{\tilde{t}}} \end{split}$$